An Ontology-Based Framework for Complex Urban Object Recognition through Integrating Visual Features and Interpretable Semantics

Author:

Xie Xiao12,Zhou Xiran13ORCID,Li Jingzhong24,Dai Weijiang5

Affiliation:

1. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

2. Key Lab for Environmental Computation and Sustainability of Liaoning Province, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China

3. Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China

4. College of Urban and Environmental Sciences, Xuchang University, Xuchang 461000, China

5. Nuclear Industry Huzhou Engineering Investigation Institute, Huzhou 313000, China

Abstract

Although previous works have proposed sophisticatedly probabilistic models that has strong capability of extracting features from remote sensing data (e.g., convolutional neural networks, CNN), the efforts that focus on exploring the human’s semantics on the object to be recognized are required more explorations. Moreover, interpretability of feature extraction becomes a major disadvantage of the state-of-the-art CNN. Especially for the complex urban objects, which varies in geometrical shapes, functional structures, environmental contexts, etc, due to the heterogeneity between low-level data features and high-level semantics, the features derived from remote sensing data alone are limited to facilitate an accurate recognition. In this paper, we present an ontology-based methodology framework for enabling object recognition through rules extracted from the high-level semantics, rather than unexplainable features extracted from a CNN. Firstly, we semantically organize the descriptions and definitions of the object as semantics (RDF-triple rules) through our developed domain ontology. Secondly, we exploit semantic web rule language to propose an encoder model for decomposing the RDF-triple rules based on a multilayer strategy. Then, we map the low-level data features, which are defined from optical satellite image and LiDAR height, to the decomposed parts of RDF-triple rules. Eventually, we apply a probabilistic belief network (PBN) to probabilistically represent the relationships between low-level data features and high-level semantics, as well as a modified TanH function is used to optimize the recognition result. The experimental results on lacking of the training process based on data samples show that our proposed approach can reach an accurate recognition with high-level semantics. This work is conducive to the development of complex urban object recognition toward the fields including multilayer learning algorithms and knowledge graph-based relational reinforcement learning.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3