Affiliation:
1. Key Laboratory of Agrometeorological Safeguard Application Technique, CMA, Zhengzhou 450003, China
2. Henan Provincial Meteorological Observatory, Zhengzhou 450003, China
3. Beijing Presky Technology Co., Ltd., Beijing 100195, China
Abstract
In this study, a convection nowcasting method based on machine learning was proposed. First, the historical data were back-calculated using the pyramid optical flow method. Next, the generated optical flow field information of each pixel and the Red-Green-Blue (RGB) image information were input into the Convolutional Long Short-Term Memory (ConvLSTM) algorithm for training purposes. During the extrapolation process, dynamic characteristics such as the rotation, convergence, and divergence in the optical flow field were also used as predictors to form an optimal nowcasting model. The test analysis demonstrated that the algorithm combined the image feature extraction ability of the convolutional neural network (CNN) and the sequential learning ability of the long short-term memory network (LSTM) model to establish an end-to-end deep learning network, which could deeply extract high-order features of radar echoes such as structural texture, spatial correlation, and temporal evolution compared with the traditional algorithm. Based on learning through the above features, this algorithm can forecast the generation and dissipation trends of convective cells to some extent. The addition of the optical flow information can more accurately simulate nonlinear trends such as the rotation, or merging, or separation of radar echoes. The trajectories of radar echoes obtained through nowcasting are closer to their actual movements, which prolongs the valid forecasting period and improves forecast accuracy.
Funder
China Meteorological Administration
Subject
Atmospheric Science,Pollution,Geophysics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献