A Convection Nowcasting Method Based on Machine Learning

Author:

Su Aifang12ORCID,Li Han12,Cui Liman12,Chen Yungang3

Affiliation:

1. Key Laboratory of Agrometeorological Safeguard Application Technique, CMA, Zhengzhou 450003, China

2. Henan Provincial Meteorological Observatory, Zhengzhou 450003, China

3. Beijing Presky Technology Co., Ltd., Beijing 100195, China

Abstract

In this study, a convection nowcasting method based on machine learning was proposed. First, the historical data were back-calculated using the pyramid optical flow method. Next, the generated optical flow field information of each pixel and the Red-Green-Blue (RGB) image information were input into the Convolutional Long Short-Term Memory (ConvLSTM) algorithm for training purposes. During the extrapolation process, dynamic characteristics such as the rotation, convergence, and divergence in the optical flow field were also used as predictors to form an optimal nowcasting model. The test analysis demonstrated that the algorithm combined the image feature extraction ability of the convolutional neural network (CNN) and the sequential learning ability of the long short-term memory network (LSTM) model to establish an end-to-end deep learning network, which could deeply extract high-order features of radar echoes such as structural texture, spatial correlation, and temporal evolution compared with the traditional algorithm. Based on learning through the above features, this algorithm can forecast the generation and dissipation trends of convective cells to some extent. The addition of the optical flow information can more accurately simulate nonlinear trends such as the rotation, or merging, or separation of radar echoes. The trajectories of radar echoes obtained through nowcasting are closer to their actual movements, which prolongs the valid forecasting period and improves forecast accuracy.

Funder

China Meteorological Administration

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3