Steam Condensation Heat Transfer in the Presence of Noncondensable Gases (NCGs) in Nuclear Power Plants (NPPs): A Comprehensive Review of Fundamentals, Current Status, and Prospects for Future Research

Author:

Albdour Samah A.12ORCID,Addad Yacine12ORCID,Alyammahi Nourah3,Afgan Imran124ORCID

Affiliation:

1. Department of Mechanical and Nuclear Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE

2. Emirates Nuclear Technology Center (ENTC), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE

3. Federal Authority for Nuclear Regulation (FANR), P.O. Box: 112021, Abu Dhabi, UAE

4. Department of Fluids and Environment, School of Engineering, University of Manchester, Manchester M13 9PL, UK

Abstract

Efficient steam condensation is crucial for safe nuclear power plant (NPP) operations, preventing pressure buildup, overheating, and the release of radioactive materials. However, the presence of noncondensable gases (NCGs), such as air, nitrogen, hydrogen, or helium, can hinder the condensation process by creating a thermal resistance layer that impedes steam diffusion and condensation on the system’s surface. Maximizing the efficiency of steam condensation requires a thorough grasp of the fundamental processes, theories, advancements, and technical hurdles. Therefore, this work thoroughly addresses these needs, with a particular emphasis on addressing the challenges posed by NCGs by dividing the work into four thematic areas. The first theme relates to a comprehensive examination of pure steam condensation phenomena, which includes an exploration of familiar condensation scenarios and various film condensation types. The second theme examines condensation in the presence of NCGs, their mixture properties, and related theories and modelling of heat and mass transfer. The third theme investigates condensation in NPP by exploring passive cooling systems and condensation phenomena under both natural and forced convection conditions during nuclear accidents, the origin of NCGs in NPP and their transportation aspects. This is followed by experimental work related to condensation scenarios and scale. Finally, the last theme looks upon the recent advancements in computational fluid dynamics (CFD) modelling of wall condensation, system analysis codes coupling with CFD, and the implementation of machine learning (ML) for predicting the condensation HTC. By bridging the gap between fundamental knowledge and practical applications, the four thematic areas presented in this work are aimed at providing a comprehensive foundation for researchers and experts in the field of steam condensation when NCGs are involved. The ultimate objective is to bolster the safety and efficacy of NPP operations by understanding the heat and mass transfer mechanisms while mitigating the risk of catastrophic events.

Funder

Federal Authority for Nuclear Regulation

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3