Adaptive Fuzzy Integral Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robot

Author:

Peng Shuying12ORCID,Shi Wuxi23

Affiliation:

1. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China

2. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy, Tianjin 300387, China

3. School of Electrical Engineering and Automation, Tianjin Polytechnic University, Tianjin 300387, China

Abstract

In this paper, the trajectory tracking problem is investigated for a nonholonomic wheeled mobile robot with parameter uncertainties and external disturbances. In this strategy, combining the kinematic model with the dynamic model, the actuator voltage is employed as the control input, and the uncertainties are approximated by a fuzzy logic system. An auxiliary velocity controller is integrated with an adaptive fuzzy integral terminal sliding mode controller, and a robust controller is employed to compensate for the lumped errors. It is proved that all the signals in the closed system are bounded and the auxiliary velocity tracking errors can converge to a small neighborhood of the origin in finite time. As a result, the tracking position errors converge asymptotically to zeros with faster response than other existing controllers. Simulation results demonstrate the effectiveness of the proposed strategy.

Funder

Natural Science Foundation of Tianjin City

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3