Shrinkage and Mechanical Properties of Fibre-Reinforced Blast Furnace Slag-Steel Slag-Based Geopolymer

Author:

Xu Shengtang12ORCID,Wu Chaofan3ORCID,Yue Jinchao1ORCID,Xu Zikai14ORCID

Affiliation:

1. School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China

2. Xinyang Highway Development Center, Xinyang 464000, Henan, China

3. Xi'an Changda Highway Maintenance Technology Co. Ltd, Xi'an 710000, Shanxi, China

4. College of Highway, Chang'an University, Xi'an, 710064, Shanxi, China

Abstract

Geopolymer materials have several obvious advantages such as energy conservation, emission reduction, and waste reuse, so they can become substitutes for cement materials. In this study, geopolymer mortars made from blast furnace slag and steel slag reinforced by basalt fibre and polyvinyl alcohol (PVA) fibre were prepared to explore the effect on their strength and shrinkage properties. Scanning electron microscopy (SEM) was employed to characterize the reaction mechanism of the geopolymer mortars. The results show that both PVA fibre and basalt fibre can improve the mechanical properties of geopolymer mortars during the late curing period. The geopolymer reinforced by basalt fibre manifested a better toughness. A proper content of PVA fibres and basalt fibres can effectively reduce the drying and autogenous shrinkage of geopolymer mortars. The optimal content of basalt fibres and PVA fibres to reduce the drying shrinkage was 0.4%. The SEM results show that the fibres can effectively alleviate the stress concentration and prevent crack propagation.

Funder

Project of Science and Technology of Henan Transportation Department

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3