Detection of Anomalies in Water Networks by Functional Data Analysis

Author:

Millán-Roures Laura1,Epifanio Irene12ORCID,Martínez Vicente12

Affiliation:

1. Dept. Matemàtiques, Universitat Jaume I, 12071 Castelló, Spain

2. Institut de Matemàtiques i Aplicacions de Castelló, Spain

Abstract

A functional data analysis (FDA) based methodology for detecting anomalous flows in urban water networks is introduced. Primary hydraulic variables are recorded in real-time by telecontrol systems, so they are functional data (FD). In the first stage, the data are validated (false data are detected) and reconstructed, since there could be not only false data, but also missing and noisy data. FDA tools are used such as tolerance bands for FD and smoothing for dense and sparse FD. In the second stage, functional outlier detection tools are used in two phases. In Phase I, the data are cleared of anomalies to ensure that data are representative of the in-control system. The objective of Phase II is system monitoring. A new functional outlier detection method is also proposed based on archetypal analysis. The methodology is applied and illustrated with real data. A simulated study is also carried out to assess the performance of the outlier detection techniques, including our proposal. The results are very promising.

Funder

Ministerio de Economía y Competitividad

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3