MicroRNA-133b Alleviates Hypoxia Injury by Direct Targeting on NOD-Like Receptor Protein 3 in Rat H9c2 Cardiomyocyte

Author:

Zhou Yongmei1,Huang Hui1,Hou Xiaolin1ORCID

Affiliation:

1. Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China

Abstract

Objective. MiR-133b was dysregulated in myocardial infarction. However, the role and mechanism of miR-133b in myocardial infarction remains unclear. This study was aimed to explore the role of miR-133b in H9c2 cell injury induced by hypoxia and to investigate the underlying molecular mechanism. Methods. Cell injury was assessed by cell viability, migration, invasion, and apoptosis assays. The expression of miR-133b and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) mRNA was determined by qRT-PCR. The levels of apoptosis-related proteins and NLRP3 were detected by western blotting. Results. Results showed that hypoxia significantly reduced cell viability, migration, and invasion, but increased apoptosis of H9c2 cells. Downregulation of miR-133b aggravated the cell injury induced by hypoxia. MiR-133b was directly targeted on NLRP3. Overexpression of NLRP3 significantly inhibited cell viability, migration, and invasion but induced cell apoptosis in H9c2 treated with hypoxia. Conclusions. Thus, miR-133b protects H9c2 against hypoxia injury via downregulation of NLRP3.

Funder

Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital

Publisher

Hindawi Limited

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3