Affiliation:
1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
2. Department of Mechanical Engineering, Jiangsu College of Safety Technology, Xuzhou 221011, China
3. Department of Automotive Engineering, Jiangsu College of Safety Technology, Xuzhou 221011, China
Abstract
For the fast and efficient closed-loop real-time feedback control of 6-UPS parallel robot (6-UPS), a novel high efficiency calculation of the workspace is proposed and investigated. As a typical Nearly General Platform (NGP), 6-UPS has good symmetries. The symmetries effectively reduce computational cost and improve computational efficiency in the kinematics, singularity, dynamics, and optimization. To scrupulously demonstrate the symmetries of workspace, a novel algorithm is proposed. The modified Euler angles (T&T angles) are employed to represent the orientation matrix of 6-UPS, the inverse kinematics is analyzed, and the workspace of 6-UPS is obtained using the discretization algorithm. Meanwhile, the symmetries of the total orientation workspace are also proved. Compared with the traditional methods, the total orientation workspace reduces 5/6 computation cost, which means that the corresponding computation efficiency is increased by 6 times. Through theoretical and numerical calculations, the symmetries of the total orientation workspace of 6-UPS are verified. The proof of the symmetries lays a solid foundation for improving the computational efficiency of kinematics, dynamics, and control of 6-UPS.
Funder
Natural Science Foundation of Jiangsu Province
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献