Ocean Emission Effects on Aerosol-Cloud Interactions: Insights from Two Case Studies

Author:

Sorooshian Armin12,Duong Hanh T.1

Affiliation:

1. Department of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721, USA

2. Department of Atmospheric Sciences, University of Arizona, P.O. Box 210081, Tucson, AZ 85721, USA

Abstract

Two case studies are discussed that evaluate the effect of ocean emissions on aerosol-cloud interactions. A review of the first case study from the eastern Pacific Ocean shows that simultaneous aircraft and space-borne observations are valuable in detecting links between ocean biota emissions and marine aerosols, but that the effect of the former on cloud microphysics is less clear owing to interference from background anthropogenic pollution and the difficulty with field experiments in obtaining a wide range of aerosol conditions to robustly quantify ocean effects on aerosol-cloud interactions. To address these limitations, a second case was investigated using remote sensing data over the less polluted Southern Ocean region. The results indicate that cloud drop size is reduced more for a fixed increase in aerosol particles during periods of higher ocean chlorophyll A. Potential biases in the results owing to statistical issues in the data analysis are discussed.

Funder

Office of Naval Research

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3