NSF (Nylon Synthetic Fiber) Effectiveness in Stabilizing Weak Subgrade Soil: An Experimental Investigation

Author:

Demsie Tarekegn Shumetie1ORCID,Beyene Markos Tsegaye2ORCID,Lemma Abuye Boja1ORCID,Alemayehu Esayas2

Affiliation:

1. Department of Civil Engineering, Arba Minch University, Arbaminch, Ethiopia

2. Department of Civil Engineering, Jimma University, Jimma, Ethiopia

Abstract

Improvement in subgrade soil has always been an area of concern for highway and geotechnical engineers. Weak subgrade soil results in a greater thickness of the pavement layer, which increases the cost of pavement construction. It further leads to large deformations, which in turn cause continuous deterioration of the paved surface. To solve this problem, various engineering solutions and soil improvement mechanisms were previously proposed. This study was designed to investigate the stabilization of weak subgrade soil with nylon synthetic fiber (NSF) in a compromising combination. Previously, some investigations used a lower fiber content with a higher fiber length, whereas others used a lower fiber length with a higher fiber content. However, this investigation was uniquely designed to stabilize weak subgrade soil with the consideration of appropriate fiber length (10 mm and 20 mm) and content (0.5%, 1%, 1.5%, and 2.5%). The engineering properties of the soil, the effect of NSF on weak subgrade soil, various fiber content and aspect ratios, and the optimum content and critical fiber aspect ratio were investigated in a laboratory. The effect of fibers on compaction, CBR values, and CBR swell values has also been studied. Laboratory results on the modified compaction tests showed that maximum dry density (MDD) was increased with the increment of fiber content, whereas optimum moisture content (OMC) remained constant. The soaked CBR and CBR swell values of natural soil were 1.80% and 8.95%, respectively. Due to reinforcement, the percentage increase in soaked CBR value at the optimum NSF content is 265.3, 310.0, 282.8, and 342.2 for aspect ratios of 33.33, 66.67, 25, and 50, respectively, with reference to natural soil. Also, the percentage decrease in swelling is 34.7, 52.75, 43.55, and 36.9, respectively. Moreover, the CBR value increases with the increase in aspect ratio by keeping the diameter constant and decreases with the increase in aspect ratio by keeping the length constant. It was also observed that increasing the length and diameter of NSF further increased the CBR value of reinforced soil. This increment was substantial at a fiber content of 1.5% for an aspect ratio of 50 (length = 20 mm, diameter = 0.4 mm). There was also a decrease in the CBR swelling value with an increase in fiber content. Finally, this investigation concluded that the use of NSF is a solution to weak soils with regard to moisture and performance problems.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference49 articles.

1. Road construction on soft soils in indonesia a study on soil- pavement interaction;R. Taufik

2. Soil and rock characterization in the Mekele area, Northern Ethiopia;G. Berhane;International Journal of Earth Sciences and Engineering,2010

3. Performance, problems and remedial measures for roads constructed on expansive soil in Ethiopia – a review;U. Bantayehu;Civil and Environmental Research,2017

4. Soil, 1. Definition, Function, and Utilization of Soil

5. A comparative review of soil modification methods;O. C. Ken;ARPN J. Earth Sci,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3