Hierarchical Scheduling Control Method for Cascade Hydro-PV-Pumped Storage Generation System

Author:

Sun Zhang12,Wang Jun1ORCID,Cheng Sixiong3,Luo Hong1,Zhang Guosheng1,Huang Tao1

Affiliation:

1. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China

2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China

3. State Grid Neijiang Electric Power Company, Neijiang 641000, China

Abstract

High photovoltaic penetration in a power system has significantly challenged its safety and economic operation. To use the complementary characteristics of various renewable energy sources (RESs) fully, a novel hierarchical scheduling control (HSC) method is presented to accommodate the variability and uncertainty of a cascade hydro-PV-pumped storage (CH-PV-PS) generation system. Considering the optimization functions and execution requirements of the CH-PV-PS system, the HSC method is divided into two layers: the dynamic optimization layer and the static optimization layer. The static optimization layer focuses on the economy of the CH-PV-PS system, and the dynamic optimization layer focuses on the safety of the CH-PV-PS system. In the first layer, that is, the static optimization layer, the objectives of the day-ahead and hour-ahead schedules are established, and a heuristic algorithm is combined with a linear programming algorithm to optimize the energy allocation. Considering the uncertainty of the PV power output and hour-ahead load, a real-time schedule is established in the second layer; that is, in the second layer, the dynamic optimization layer, real-time scheduling and prediction of active output are established. Model predictive control methods are introduced to correct for prediction bias at different time scales in order to fully utilize the control capability of hydropower generation. A CH-PV-PS real-world system in Southwest China is chosen as a case study. In the three scenarios, where only PV fluctuations are considered, the simulation results reveal that, compared with the traditional open-loop optimized and hierarchical open-loop optimization methods, the HSC method reduces the average relative deviation of PV and increases the system economics. After a large amount of RESs are connected to the power grid, the HSC method provides a solution for improving the consumption of RESs.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of pumped hydro energy storage systems under uncertainty: A review;Journal of Energy Storage;2023-12

2. Research on Optimal Scheduling of Multi-source Power System with Complementary Hydro and Photovoltaic Generation;2023 3rd International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT);2023-07-21

3. Multi-time-scale optimal scheduling control strategy for Cascade Hydro-PV-Pumped Storage complementary Generation System;2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA);2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3