Classification of Markov Encrypted Traffic on Gaussian Mixture Model Constrained Clustering

Author:

Yi Junkai1ORCID,Gong Guanglin1ORCID,Liu Zeyu1,Zhang Yacong2

Affiliation:

1. College of Automation, Beijing Information Science and Technology University, Beijing 100192, China

2. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100015, China

Abstract

In order to solve the problem that traditional analysis approaches of encrypted traffic in encryption transmission of network application only consider the traffic classification in the complete communication process with ignoring traffic classification in the simplified communication process, and there are a lot of duplication problems in application fingerprints during state transition, a new classification approach of encrypted traffic is proposed. The article applies the Gaussian mixture model (GMM) to analyze the length of the message, and the model is established to solve the problem of application fingerprint duplication. The fingerprints with similar lengths of the same application are divided into as few clusters as possible by constrained clustering approach, which speeds up convergence speed and improves the clustering effect. The experimental results show that compared with the other encryption traffic classification approaches, the proposed approach has 11.7%, 19.8%, 6.86%, and 5.36% improvement in TPR, FPR, Precision, and Recall, respectively, and the classification effect of encrypted traffic is significantly improved.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3