Deep Convolutional Neural Network-Based Structural Damage Localization and Quantification Using Transmissibility Data

Author:

Cofre-Martel Sergio12ORCID,Kobrich Philip1ORCID,Lopez Droguett Enrique12ORCID,Meruane Viviana1ORCID

Affiliation:

1. Mechanical Engineering Department, University of Chile, Santiago, Chile

2. Center for Risk and Reliability, University of Maryland, College Park, USA

Abstract

Damage diagnosis has become a valuable tool for asset management, enhanced by advances in sensor technologies that allows for system monitoring and providing massive amount of data for use in health state diagnosis. However, when dealing with massive data, manual feature extraction is not always a suitable approach as it is labor intensive requiring the intervention of domain experts with knowledge about the relevant variables that govern the system and their impact on its degradation process. To address these challenges, convolutional neural networks (CNNs) have been recently proposed to automatically extract features that best represent a system’s degradation behavior and are a promising and powerful technique for supervised learning with recent studies having shown their advantages for feature identification, extraction, and damage quantification in machine health assessment. Here, we propose a novel deep CNN-based approach for structural damage location and quantification, which operates on images generated from the structure’s transmissibility functions to exploit the CNNs’ image processing capabilities and to automatically extract and select relevant features to the structure’s degradation process. These feature maps are fed into a multilayer perceptron to achieve damage localization and quantification. The approach is validated and exemplified by means of two case studies involving a mass-spring system and a structural beam where training data are generated from finite element models that have been calibrated on experimental data. For each case study, the models are also validated using experimental data, where results indicate that the proposed approach delivers satisfactory performance and thus being an appropriate tool for damage diagnosis.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3