Affiliation:
1. Mechanical Engineering Department, University of Chile, Santiago, Chile
2. Center for Risk and Reliability, University of Maryland, College Park, USA
Abstract
Damage diagnosis has become a valuable tool for asset management, enhanced by advances in sensor technologies that allows for system monitoring and providing massive amount of data for use in health state diagnosis. However, when dealing with massive data, manual feature extraction is not always a suitable approach as it is labor intensive requiring the intervention of domain experts with knowledge about the relevant variables that govern the system and their impact on its degradation process. To address these challenges, convolutional neural networks (CNNs) have been recently proposed to automatically extract features that best represent a system’s degradation behavior and are a promising and powerful technique for supervised learning with recent studies having shown their advantages for feature identification, extraction, and damage quantification in machine health assessment. Here, we propose a novel deep CNN-based approach for structural damage location and quantification, which operates on images generated from the structure’s transmissibility functions to exploit the CNNs’ image processing capabilities and to automatically extract and select relevant features to the structure’s degradation process. These feature maps are fed into a multilayer perceptron to achieve damage localization and quantification. The approach is validated and exemplified by means of two case studies involving a mass-spring system and a structural beam where training data are generated from finite element models that have been calibrated on experimental data. For each case study, the models are also validated using experimental data, where results indicate that the proposed approach delivers satisfactory performance and thus being an appropriate tool for damage diagnosis.
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献