Electromagnetic Interference from Swimming Pool Generator Current Causing Inappropriate ICD Discharges

Author:

Roberto Edward Samuel12ORCID,Aung Thein Tun12,Hassan Atif3,Wase Abdul124

Affiliation:

1. Wright State University Boonshoft School of Medicine, Dayton, OH, USA

2. Good Samaritan Hospital, Dayton, OH, USA

3. University of Cincinnati Medical Center, Cincinnati, OH, USA

4. Dayton Heart and Vascular Hospital, Dayton, OH, USA

Abstract

Electromagnetic interference (EMI) includes any electromagnetic field signal that can be detected by device circuitry, with potentially serious consequences: incorrect sensing, pacing, device mode switching, and defibrillation. This is a unique case of extracardiac EMI by alternating current leakage from a submerged motor used to recycle chlorinated water, resulting in false rhythm detection and inappropriate ICD discharge. A 31-year-old female with arrhythmogenic right ventricular cardiomyopathy and Medtronic dual-chamber ICD placement presented after several inappropriate ICD shocks at the public swimming pool. Patient had never received prior shocks and device was appropriate at all regular follow-ups. Intracardiac electrograms revealed unique, high-frequency signals at exactly 120 msec suggestive of EMI from a strong external source of alternating current. Electrical artifact was incorrectly sensed as a ventricular arrhythmia which resulted in discharge. ICD parameters including sensing, pacing thresholds, and impedance were all normal suggesting against device malfunction. With device failure and intracardiac sources excluded, EMI was therefore strongly suspected. Avoidance of EMI source brought complete resolution with no further inappropriate shocks. After exclusion of intracardiac interference, device malfunction, and abnormal settings, extracardiac etiologies such as EMI must be thoughtfully considered and excluded. Elimination of inappropriate shocks is to “first, do no harm.”

Publisher

Hindawi Limited

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3