Affiliation:
1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
Abstract
This paper presents a novel quasi-zero-stiffness (QZS) isolator designed by combining a tension spring with a vertical linear spring. In order to improve the performance of low-frequency vibration isolation, geometric nonlinear damping is proposed and applied to a quasi-zero-stiffness (QZS) vibration isolator. Through the study of static characteristics first, the relationship between force displacement and stiffness displacement of the vibration isolation mechanism is established; it is concluded that the parameters of the mechanism have the characteristics of quasi-zero stiffness at the equilibrium position. The solutions of the QZS system are obtained based on the harmonic balance method (HBM). Then, the force transmissibility of the QZS vibration isolator is analyzed. And the results indicate that increasing the nonlinear damping can effectively suppress the transmissibility compared with the nonlinear damping system. Finally, this system is innovative for low-frequency vibration isolation of rehabilitation robots and other applications.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献