Affiliation:
1. Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan
2. Ceramic Materials Section (T62), New Materials Research & Development Department, China Steel Corporation, Kaohsiung, Taiwan
Abstract
The three-dimensional model was developed according to number 4 of the main trough of blast furnace at China Steel Co. (CSC BF4). The k-ε equations and volume of fluid (VOF) were used for describing the turbulent flow at the impinging zone of trough, indicating fluids of liquid iron, molten slag, and air in the governing equation, respectively, in this paper. The pressure field and velocity profile were then obtained by the finite volume method (FVM) and the pressure implicit with splitting of operators (PISO), respectively, followed by calculating the wall shear stress through Newton’s law of viscosity for validation. Then, the operation conditions and the main trough geometry were numerically examined for the separation efficiency of iron from slag stream. As shown in the results, the molten iron losses associated with the slag can be reduced by increasing the height difference between the slag and iron ports, reducing the tapping rate, and increasing the height of the opening under the skimmer.
Funder
Ministry of Science and Technology, Taiwan
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献