PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4) Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

Author:

Hardwick James P.1ORCID,Osei-Hyiaman Douglas23,Wiland Homer1,Abdelmegeed Mohamed A.4ORCID,Song Byoung-Joon4

Affiliation:

1. Biochemistry and Molecular Pathology, Department of Integrative Medical Sciences, Northeastern OH Universities College of Medicine and Pharmacy (NEOUCOM/NEOUCOP), 4209 state Route 44, Rootstown, OH 44272, USA

2. Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, 9000 Rockville Pike, Bethesda, MD 20892-9410, USA

3. CardioMetabolic Disease Research Group, Department of Molecular and Cellular Biology, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd, 6-7-5 Minatojima-Minaminachi, Chuo-Ku, Kobe 650-0047, Japan

4. Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, 9000 Rockville Pike, Bethesda, MD 20892-9410, USA

Abstract

Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis), due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs). How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA), monounsaturated (MUFA), or saturated (SFA) may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450CYP4Agene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducibleCYP2E1in contributing to increased oxidative stress,Cyp2e1-null mice still develop steatohepatitis with a dramatic increase inCYP4Agene expression. This strongly implies thatCYP4Afatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA)CYP4Aand long-chain fatty acid (LCFA)CYP4F-hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increasedCYP4Aexpression with a decrease inCYP4Fgenes may promote the progression of steatosis to steatohepatitis.

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Drug Discovery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3