Development of Bright Fluorescent Poly(1-vinyl-2-pyrrolidone-co-acrylonitrile) and Its Polysalts with HCl and HNO3: Materials for Solid State Electrical Applications

Author:

Upadhyaya Samiran1,Sarma Rajumani1,Barik Abdul1,Sen Sarma Neelotpal1ORCID

Affiliation:

1. Advanced Materials Laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam 781035, India

Abstract

Herein, we have reported the synthesis, characterization, and ionic conductivity analysis of fluorescent poly(1-vinyl-2-pyrrolidone-co-acrylonitrile) and its salts with 10% HCl and HNO3 in solid state. The synthesized polymers and their polysalts were characterized using Fourier-transformed infrared spectroscopy, UV-visible, Cyclic Voltammetry, Thermogravimetric analysis, Differential Scanning Calorimetric, X-ray diffraction, and spectrofluorometric techniques. The AC conductivities were measured in the frequency ranging from 42 Hz to 1 MHz and temperature from 30°C to 70°C in solid state. Ionic conductivities of the salts of the copolymer with hydrochloric acid and nitric acid were found to be 2.145×10−5 and 2.349×10−5 S cm −1, respectively, which are nearly 1000 times more than that of poly(1-vinyl-2-pyrrolidone-co-acrylonitrile). The activation energies for the copolymer and the polyelectrolytes were found to be 0.454, 0.6288, and 0.659 eV, respectively. The transport number of the copolymers was found to be 0.0278, and that of the polysalts was found to be 0.7596 and 0.7424, respectively. The copolymer showed distinct fluorescent when irradiated with UV light and can be used as acid vapor sensor in solid state.

Funder

Government of India

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3