Instantaneous Modal Parameter Identification of Linear Time-Varying Systems Based on Chirplet Adaptive Decomposition

Author:

Zhang Jie1ORCID,Shi Zhiyu1ORCID

Affiliation:

1. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Instantaneous modal parameter identification of time-varying dynamic systems is a useful but challenging task, especially in the identification of damping ratio. This paper presents a method for modal parameter identification of linear time-varying systems by combining adaptive time-frequency decomposition and signal energy analysis. In this framework, the adaptive linear chirplet transform is applied in time-frequency analysis of acceleration response for its higher energy concentration, and the response of each mode can be adaptively decomposed via an adaptive Kalman filter. Then, the damping ratio of the time-varying systems is identified based on energy analysis of component response signal. The proposed method can not only improve the accuracy of instantaneous frequency extraction but also ensure the antinoise ability in identifying the damping ratio. The efficiency of the method is first verified through a numerical simulation of a three-degree-of-freedom time-varying structure. Then, the method is demonstrated by comparing with the traditional wavelet and time-domain peak method. The identified results illustrate that the proposed method can obtain more accurate modal parameters in low signal-to-noise ratio (SNR) scenarios.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3