Personalized Recommendation Algorithm for Interactive Medical Image Using Deep Learning

Author:

Liu Feng12,Guo Weiwei1ORCID

Affiliation:

1. School of Electrical and Information Engineering, Heilongjiang University of Technology, Jixi 158100, China

2. Faculty of Communication, Visual Art and Computing, Universiti Selangor, Shah Alam 40000, Malaysia

Abstract

Personalized interactive image recommendation has several issues, such as being slow or having poor recommendation quality. Therefore, we propose an image personalized recommendation algorithm (IPRA) using deep learning to improve the time and quality of personalized interactive image recommendations. First, the feature subimage is obtained and converted into a one-dimensional vector using the convolution neural network model. Single input and single output functional and dual input and single output generalized functional network model are integrated into the model to improve the learning ability of nonlinear mapping and avoid overfitting during the training process; second, a one-dimensional vector is clustered using the fuzzy k-means approach and then translated into hyperbolic space; Finally, the Poincare map model is used to map the updated vector, the transformed vector is mapped using the PM model, and the image information is fed back to the two-dimensional plane, and the image recommendation set is formed based on the ranking of similarity, and the visual recommendation is presented to the user. The results show that the size of the convolution kernel is 2 × 2, and the image one-dimensional vector clustering can be better completed. The optimal value of F1 is 0.92, and the optimal value of average time is 11 s. The image recommendation quality is better, and the image recommendation can be formed according to the photographic similarity, which has good application value.

Funder

Natural Science Foundation of Heilongjiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference22 articles.

1. Double layered recommendation algorithm based on fast density clustering with graph-based filtering & Applications;J. Chen;Control theory and application,2019

2. CEST magnetic resonance image analysis and display system with intelligent interactive region of interest selection;X. Zhang;Journal of Northwest University,2020

3. Research on personalized video recommendation algorithm based on context awareness in mobile environment;G. Luo;Application Research of Computers,2020

4. Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques

5. Personalized recommendation via user preference matching

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3