Akebia trifoliate (Thunb.) KoidzSeed Extract Inhibits the Proliferation of Human Hepatocellular Carcinoma Cell Lines via Inducing Endoplasmic Reticulum Stress

Author:

Lu Wen-Li1,Ren Hong-Yan1,Liang Cao1,Zhang Yuan-Yuan1,Xu Ji2,Pan Zhi-Qiang1,Liu Xiao-Mei1,Wu Zhong-Hua3,Fang Zhao-Qin1

Affiliation:

1. College of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China

2. Scientific Information Centre, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China

3. Scientific & Technology Experimental Centre, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China

Abstract

Akebia Fructus has long been used for hepatocellular carcinoma (HCC) in China, while the molecular mechanism remains obscure. Our recent work found thatAkebia trifoliate (Thunb.) Koidzseed extract (ATSE) suppressed proliferation and induced endoplasmic reticulum (ER) stress in SMMC-7721. The present study aimed to throw more light on the mechanism. ER stress occurred after ATSE treatment in HepG2, HuH7, and SMMC-7721 cells, manifested as ER expansion, and SMMC-7721 was the most sensitive kind in terms of morphology. Cell viability assay showed that ATSE significantly inhibited cells proliferation. Flow cytometry analysis indicated that ATSE leads to an upward tendency of G0/G1 phase and a reduced trend of the continuous peak after G2/M phase in HepG2; ATSE promoted apoptosis in HuH7 and a notable reduction in G0/G1 phase; ATSE does not quite influence cell cycles of SMMC-7721. Western blot analysis showed an increased trend of the chosen ER stress-related proteins after different treatments but nonsignificantly; only HYOU1 and GRP78 were decreased notably by ATSE in HuH7. Affymetrix array indicated that lots of ER stress-related genes’ expressions were significantly altered, and downward is the main trend. These results suggest that ATSE have anticancer potency in HCC cells via partly inducing ER stress.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3