Multiple-Vehicle Longitudinal Collision Mitigation by Coordinated Brake Control

Author:

Lu Xiao-Yun1,Wang Jianqiang2ORCID,Li Shengbo Eben2,Zheng Yang2

Affiliation:

1. PATH, University of California, Berkeley, CA 94804, USA

2. The State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

Abstract

Rear-end collision often leads to serious casualties and traffic congestion. The consequences are even worse for multiple-vehicle collision. Many previous works focused on collision warning and avoidance strategies of two consecutive vehicles based on onboard sensor detection only. This paper proposes a centralized control strategy for multiple vehicles to minimize the impact of multiple-vehicle collision based on vehicle-to-vehicle communication technique. The system is defined as a coupled group of vehicles with wireless communication capability and short following distances. The safety relationship can be represented as lower bound limit on deceleration of the first vehicle and upper bound on maximum deceleration of the last vehicle. The objective is to determine the desired deceleration for each vehicle such that the total impact energy is minimized at each time step. The impact energy is defined as the relative kinetic energy between a consecutive pair of vehicles (approaching only). Model predictive control (MPC) framework is used to formulate the problem to be constrained quadratic programming. Simulations show its effectiveness on collision mitigation. The developed algorithm has the potential to be used for progressive market penetration of connected vehicles in practice.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic traffic graph based risk assessment of multivehicle lane change interaction scenarios;Physica A: Statistical Mechanics and its Applications;2024-06

2. Driving Safety;The Intelligent Safety of Automobile;2023-11-28

3. Enhanced index of risk assessment of lane change on expressway weaving segments: A case study of an expressway in China;Accident Analysis & Prevention;2023-02

4. Distributed Coordinated Brake Control for Longitudinal Collision Avoidance of Multiple Connected Automated Vehicles;IEEE Transactions on Intelligent Vehicles;2023-01

5. Self-learning Decision and Control for Highly Automated Vehicles;AI-enabled Technologies for Autonomous and Connected Vehicles;2022-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3