Vascular Endothelial Growth Factor Inhibits Phagocytosis of Apoptotic Cells by Airway Epithelial Cells

Author:

Mu Mimi123,Gao Peiyu123,He Jing123,Tao Xiangnan4,Song Chuanwang123ORCID

Affiliation:

1. Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China

2. Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, China

3. Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui 233030, China

4. Clinical Laboratory, The Second Affiliated Hospital of Bengbu Medical College, Anhui 233004, China

Abstract

Professional phagocytes such as dendritic cells and macrophages can ingest particles larger than 0.5 μm in diameter. Epithelial cells are nonprofessional phagocytes that cannot ingest pathogenic microorganisms, but they can ingest apoptotic cells. Inhibition of the engulfment of apoptotic cells by the airway epithelium can cause severe airway inflammation. Vascular endothelial growth factor (VEGF) is an angiogenesis-promoting factor that can mediate allergic airway inflammation and can promote airway epithelial cells (AECs) proliferation, but it is not clear whether it affects the engulfment of apoptotic cells by AECs. In the present study, VEGF inhibited engulfment of apoptotic cells by AECs via binding to VEGF receptor(R)2. This inhibitory effect of VEGF was not influenced by masking of phosphatidylserine (PS) on the surface of apoptotic cells and was partially mediated by the PI3K-Akt signaling pathway. VEGF inhibition of phagocytosis involved polymerization of actin and downregulation of the expression of the phagocytic-associated protein Beclin-1 in AECs. Since engulfment of apoptotic cells by AECs is an important mechanism for airway inflammation regression, VEGF inhibition of the engulfment of apoptotic cells by airway epithelial cells may be important for mediating allergic airway inflammation.

Funder

Key Program of Anhui Province for Outstanding Talents in University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3