Numerical Investigation of Natural Convection Viscoelastic Jeffrey’s Nanofluid Flow from a Vertical Permeable Flat Plate with Heat Generation, Thermal Radiation, and Chemical Reaction

Author:

Agbaje T. M.1ORCID,Leach P. G. L.1

Affiliation:

1. Institute of Systems Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa

Abstract

The boundary layer flow of an incompressible viscoelastic Jeffrey’s nanofluid from a vertical permeable flat plate is investigated. We consider the effects of heat generation, thermal radiation, and chemical reaction on the fluid flow. The nonlinear transformed coupled differential equations that describe the transport processes are solved numerically using a multidomain bivariate spectral quasilinearization method (MD-BSQLM). This innovative method involves blending the quasilinearization idea with the bivariate Lagrange interpolation. The solutions of the resulting system of equations are then obtained sequentially on multiple intervals using the Chebyshev spectral collocation method. The method is shown to give accurate solutions for boundary layer-type equations. The influence of various physical parameters on velocity, temperature, and nanoparticle concentration fields, as well as on the skin friction and heat and mass transfer coefficients, is shown and discussed in detail. The range of the values of the governing parameters considered in this study is between 0 , 4 . For qualitative validation of the results and the numerical method used, calculations were carried out to graphically obtain the velocity, temperature, and nanoparticle concentration fields for selected physical parameter values. The results obtained were found to correlate with the results from published literature. For quantitative verification of our findings, the MD-BSQLM numerical solutions were again confirmed against published results reported in the literature, and the results were observed to be in perfect agreement. This study’s findings indicate that the Deborah number and suction parameter have related effects on the velocity profile, which is to suppress both the flow velocity and the momentum boundary layer thickness. Increasing the heat generation and thermal radiation parameters enhances both the temperature and thermal boundary layer depths. In contrast, an increase in the chemical reaction parameter causes a decrease in the fluid concentration.

Funder

Durban University of Technology

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3