Study on Frequency Characteristics of Rotor Systems for Fault Detection Using Variational Mode Decomposition

Author:

Chen Kai12ORCID,Zhou Xin-Cong12,Fang Jun-Qiang12,Qin Li3

Affiliation:

1. Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan 430063, China

2. Reliability Engineering Institute, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China

3. School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

Due to the complicated structure, vibration signal of rotating machinery is multicomponent with nonstationary and nonlinear features, so it is difficult to diagnose faults effectively. Therefore, effective extraction of vibration signal characteristics is the key to diagnose the faults of rotating machinery. Mode mixing and illusive components existed in some conventional methods, such as EMD and EEMD, which leads to misdiagnosis in extracting signals. Given these reasons, a new fault diagnosis method, namely, variation mode decomposition (VMD), was proposed in this paper. VMD is a newly developed technique for adaptive signal decomposition, which can decompose a multicomponent signal into a series of quasi-orthogonal intrinsic mode functions (IMFs) simultaneously, corresponding to the components of signal clearly. To further research on VMD method, the advantages and characteristics of VMD are investigated via numerical simulations. VMD is then applied to detect oil whirl and oil whip for rotor systems fault diagnosis via practical vibration signal. The experimental results demonstrate the effectiveness of VMD method.

Funder

Ministry of Transport

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3