Predicting Learning Behavior Using Log Data in Blended Teaching

Author:

Xie Shu-Tong12ORCID,He Zong-Bao1,Chen Qiong3ORCID,Chen Rong-Xin1ORCID,Kong Qing-Zhao4,Song Cun-Ying5

Affiliation:

1. School of Computer Engineering, Jimei University, Xiamen 361021, China

2. Digital Fujian Big Data Modeling and Intelligent Computing Institute, Jimei University, Xiamen 361021, China

3. College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China

4. School of Science, Jimei University, Xiamen 361021, China

5. School of Foreign Languages, Jimei University, Xiamen 361021, China

Abstract

Online and offline blended teaching mode, the future trend of higher education, has recently been widely used in colleges around the globe. In the article, we conducted a study on students’ learning behavior analysis and student performance prediction based on the data about students’ behavior logs in three consecutive years of blended teaching in a college’s “Java Language Programming” course. Firstly, the data from diverse platforms such as MOOC, Rain Classroom, PTA, and cnBlog are integrated and preprocessed. Secondly, a novel multiclass classification framework, combining the genetic algorithm (GA) and the error correcting output codes (ECOC) method, is developed to predict the grade levels of students. In the framework, GA is designed to realize both the feature selection and binary classifier selection to fit the ECOC models. Finally, key factors affecting grades are identified in line with the optimal subset of features selected by GA, which can be analyzed for teaching significance. The results show that the multiclass classification algorithm designed in this article can effectively predict grades compared with other algorithms. In addition, the selected subset of features corresponding to learning behaviors is pedagogically instructive.

Funder

Natural Science Foundation of Fujian Province

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3