Target Recognition of SAR Images Based on SVM and KSRC

Author:

Zhao Haiyan1ORCID

Affiliation:

1. School of Information Science and Engineering, Tianjin Tianshi College, Tianjin 301700, China

Abstract

A synthetic aperture radar (SAR) target recognition method combining linear and nonlinear feature extraction and classifiers is proposed. The principal component analysis (PCA) and kernel PCA (KPCA) are used to extract feature vectors of the original SAR image, respectively, which are classical and reliable feature extraction algorithms. In addition, KPCA can effectively make up for the weak linear description ability of PCA. Afterwards, support vector machine (SVM) and kernel sparse representation-based classification (KSRC) are used to classify the KPCA and PCA feature vectors, respectively. Similar to the idea of feature extraction, KSRC mainly introduces kernel functions to improve the processing and classification capabilities of nonlinear data. Through the combination of linear and nonlinear features and classifiers, the internal data structure of SAR images and the correspondence between test and training samples can be better investigated. In the experiment, the performance of the proposed method is tested based on the MSTAR dataset. The results show the effectiveness and robustness of the proposed method.

Funder

Tianjin Major Scientific and Technological Research Plan

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3