Integrated Analysis of a Gene Correlation Network Identifies Critical Regulation of Fibrosis by lncRNAs and TFs in Idiopathic Pulmonary Fibrosis

Author:

Wang Fan12ORCID,Li Pei2,Li Feng-sen3ORCID

Affiliation:

1. Xinjiang Medical University, Urumqi, Xinjiang 830000, China

2. Kelamayi City Dushanzi People’s Hospital, Xinjiang 830000, China

3. Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University & National Clinical Research Base of Traditional Chinese Medicine, Urumqi, Xinjiang 830000, China

Abstract

Idiopathic pulmonary fibrosis (IPF), the most frequent form of irreversible interstitial pneumonia with unknown etiology, is characterized by massive remodeling of lung architecture and followed by progressive loss of lung function. However, the key regulatory genes and the specific signaling pathways involved in the onset and progression of IPF still remain unclear. The present study is aimed at investigating the key role of long noncoding RNAs (lncRNAs) and transcription factors (TFs) involved in the pathogenesis of IPF through the integrated analysis of three gene expression profiles from the GEO dataset (GSE2052, GSE44723, and GSE24206). A total of 8483 differentially expressed genes (DEGs) including 988 upregulated and 7495 downregulated genes were filtered. Subsequently, following the intersection of these DEGs, 29 overlapping genes were identified and further analyzed using a bioinformatics approach. Furthermore, the protein-protein interaction (PPI) network was used to obtain 18 modules of related genes. The hub genes were identified through hypergeometric testing, which were closely associated with ubiquitin-mediated proteolysis, the spliceosome, and the cell cycle. The significant difference was observed in the expression of these key genes, such as lncRNA MALAT1, E2F1, and YBX1, in the peripheral blood of IPF patients when compared with those normal control subjects by real-time polymerase chain reaction (RT-PCR) analysis. This study indicated that lncRNA MALAT1, E2F1, and YBX1 may be key regulators for the pathogenesis of IPF.

Funder

Xinjiang Uygur Autonomous Region Graduate Research and Innovation project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3