A Novel Version of HPM Coupled with the PSEM Method for Solving the Blasius Problem

Author:

Filobello-Nino Uriel1,Vazquez-Leal Hector12ORCID,Huerta-Chua Jesus3,Jimenez-Fernandez Victor Manuel1,Sandoval-Hernandez Mario Alberto4,Delgado-Alvarado Enrique3,Tlapa-Carrera Victor Manuel3ORCID

Affiliation:

1. Facultad de Instrumentación Electrónica, Universidad Veracruzana, Cto. Gonzalo Aguirre Beltrán S/N, Xalapa 91000, Veracruz, Mexico

2. Consejo Veracruzano de Investigación Científica y Desarrollo Tecnológico (COVEICYDET), Av Rafael Murillo Vidal No. 1735, Cuauhtémoc, Xalapa 91069, Veracruz, Mexico

3. Instituto Tecnológico Superior de Poza Rica, Tecnológico Nacional de México, Luis Donaldo Colosio Murrieta S/N, Arroyo Del Maíz, C.P., Poza Rica 93230, Veracruz, Mexico

4. CBTis 190 DGETI, Av 15, Venustiano Carranza, Carranza 2da Sección, Boca Del Río 94297, Veracruz, Mexico

Abstract

This work studies the nonlinear differential equation that models the Blasius problem (BP) which is of great importance in fluid dynamics. The aim is to obtain an approximate analytical expression that adequately describes the phenomenon considered. To find such approximation, we propose a new method denominated powered homotopy perturbation (PHPM). Unlike HPM algorithm, the successive integration process generated by PHPM will consider zero the constants of integration in each approximation, except the last one. In the same way, PHPM will propose an adequate initial trial function provided of some unknown parameters in such a way that it will not evaluate the initial conditions in the iterations of the process; therefore, this set of parameters will be employed with the purpose of adjusting in the best accurate way the proposed approximation at the final part of the process. As a matter of fact, we will note from this analysis that the proposed solution is compact and easy to evaluate and involves a sum of five exponential functions plus a linear part of two terms, which is ideal for practical applications. With the purpose to get a better approximation, we find useful to combine PHPM with the power series extender method (PSEM) which implies to add to the PHPM solution one rational function with parameters to adjust. From this proposal, we find an approximate solution competitive with others from the literature.

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Reference57 articles.

1. An Approximate Solution of Blasius Equation by using HPM Method

2. Theoretical physics;L. D. Landau;Fluid Mechanics,1987

3. A handy exact solution for flow due to a stretching boundary with partial slip;U. Filobello-Nino;Revista mexicana de física E,2013

4. Approximate solutions for the generalized KdV–Burgers' equation by He's variational iteration method

5. Assessment of Modified Variational Iteration Method in BVPs High-Order Differential Equations

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3