Efficient Investigation of Rock Crack Propagation and Fracture Behaviors during Impact Fragmentation in Rockfalls Using Parallel DDA

Author:

Zheng Lu12,Wu Yihan1,Wu Wei3,Zhang Hong3ORCID,Peng Xinyan2ORCID,Zhang Xuelue14,Wu Xuezhen1

Affiliation:

1. College of Civil Engineering, Fuzhou University, Fuzhou 350108, China

2. Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China

3. College of Civil Engineering, Tongji University, Shanghai 200092, China

4. Fujian Provincial Institute of Architectural Design and Research Co. Ltd., Fuzhou 350001, China

Abstract

The study of the rock crack propagation and fracture behaviors during impact fragmentation is important and necessary for disaster evaluation of rockfalls. Discontinuous Deformation Analysis (DDA) incorporating virtual joints can offer a powerful tool to solve such a problem. In the analysis process, the computational efficiency is critical because the mesh must be very dense to make crack propagation more realistic. Thus, parallel DDA using OpenMP is applied. The flattened and precrack Brazilian disc tests are first reproduced, respectively, to verify the accuracy and efficiency of the parallel DDA with virtual joints. Then, the impact fragmentation process is simulated and validated with corresponding laboratory experiments in terms of crack propagation results. Furthermore, the effects of joint-slope angle, joint connectivity rate, and impact velocity on rock fracture behaviors are investigated. It is concluded that the peak number of cracks occurs when the joint-slope angle ranges between 30° and 45°; the higher impact velocity and joint connectivity rate tend to cause more cracks and larger damages to the specimen.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3