Designing an Efficient and Highly Dynamic Substitution-Box Generator for Block Ciphers Based on Finite Elliptic Curves

Author:

Murtaza Ghulam1ORCID,Azam Naveed Ahmed2ORCID,Hayat Umar1ORCID

Affiliation:

1. Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

2. Department of Applied Mathematics and Physics Graduate School of Informatics, Kyoto University, Japan

Abstract

Developing a substitution-box (S-box) generator that can efficiently generate a highly dynamic S-box with good cryptographic properties is a hot topic in the field of cryptography. Recently, elliptic curve (EC)-based S-box generators have shown promising results. However, these generators use large ECs to generate highly dynamic S-boxes and thus may not be suitable for lightweight cryptography, where the computational power is limited. The aim of this paper is to develop and implement such an S-box generator that can be used in lightweight cryptography and perform better in terms of computation time and security resistance than recently designed S-box generators. To achieve this goal, we use ordered ECs of small size and binary sequences to generate certain sequences of integers which are then used to generate S-boxes. We performed several standard analyses to test the efficiency of the proposed generator. On an average, the proposed generator can generate an S-box in 0.003 seconds, and from 20,000 S-boxes generated by the proposed generator, 93 % S-boxes have at least the nonlinearity 96. The linear approximation probability of 1000 S-boxes that have the best nonlinearity is in the range [0.117, 0.172] and more than 99% S-boxes have algebraic complexity at least 251. All these S-boxes have the differential approximation probability value in the interval [0.039, 0.063]. Computational results and comparisons suggest that our newly developed generator takes less running time and has high security against modern attacks as compared to several existing well-known generators, and hence, our generator is suitable for lightweight cryptography. Furthermore, the usage of binary sequences in our generator allows generating plaintext-dependent S-boxes which is crucial to resist chosen-plaintext attacks.

Funder

HEC

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3