Progressive Damage Process and Failure Characteristics of Coal under Uniaxial Compression with Different Loading Rates

Author:

Zhu Chuanqi1ORCID,Li Shaobo1ORCID,Luo Yong12ORCID,Guo Biao3ORCID

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China

2. School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China

3. Qidong Coal Mine of Hengyuan Coal Power Co., Ltd., Suzhou 234000, China

Abstract

To study the effect of loading rate on the progressive damage and failure characteristics of coal, an ultrasonic detector and a camera were used to measure the P-wave velocity and record the failure process of cuboid coal samples in uniaxial compression tests with five loading rates. The mechanical properties, damage process, and failure characteristics of the samples were analysed, and the mechanism of the advancing velocity of the working face in coal failure was discussed. The results show that, as the loading rate increases, the peak strength of the sample generally shows an increasing trend, but the elastic modulus changes irregularly. The sample is more prone to local failure before the peak strength. An increase in the loading rate rapidly promotes damage in the sample and accelerates the transition from internal damage to macroscopic failure, with no obvious effect on the ratio of damage threshold to corresponding peak strength. At low loading rates, the samples mainly experienced static failure; the failure form was spalling, and the failure range was wide. At high loading rates, the samples were prone to dynamic failure in the local area, manifested as the ejection of slabs and debris. A greater loading rate produced smaller and thinner slabs and a greater ejection velocity. Properly increasing the advancing velocity of the working face is conducive to reducing spalling to prevent large-area roof fall, but it may increase the possibility of coal burst in local areas. The results of this study provide a reference for roof control and coal burst disaster prevention on the working face in deep coal mining.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3