Multiple Feature Vectors Based Fault Classification for WSN Integrated Bearing of Rolling Mill

Author:

Qin Bo1ORCID,Zhang Luyang1ORCID,Yin Heng1ORCID,Qin Yan2ORCID

Affiliation:

1. School of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

2. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

For rolling mill machines, the operation status of bearing has a close relationship with process safety and production effectiveness. Therefore, reliable fault diagnosis and classification are indispensable. Traditional methods always characterize fault feature using a single fault vector, which may fail to reveal whole fault influences caused by complex process disturbances. Besides, it may also lead to poor fault classification accuracy. To solve the above-mentioned problems, a fault extraction method is put forward to extract multiple feature vectors and then a classification model is developed. First, to collect sufficient data, a data acquisition system based on wireless sensor network is constructed to replace the traditional wired system which may bring dangers during production. Second, the measured signal is filtered by a morphological average filtering algorithm to remove process noise and then the empirical mode decomposition method is applied to extract the intrinsic mode function (IMF) which contains the fault information. On the basis of the IMFs, a time domain index (energy) and a frequency index (singular values) are proposed through Hilbert envelope analysis. From the above analysis, the energy index and the singular value matrix are used for fault classification modeling based on the enhanced extreme learning machine (ELM), which is optimized by the bat algorithm to adjust the input weights and threshold of hidden layer node. In comparison with the fault classification methods based on SVM and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Abnormal Vibration State Recognition Method for Rolling Mill;2022 34th Chinese Control and Decision Conference (CCDC);2022-08-15

2. Fault Diagnosis of Rolling Bearing Using Wireless Sensor Networks and Convolutional Neural Network;International Journal of Online and Biomedical Engineering (iJOE);2020-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3