Research on Image Recognition of Building Wall Design Defects Based on Partial Differential Equation

Author:

Yu Xiwen1ORCID,Wang Kai2ORCID,Wang Shaoxuan3

Affiliation:

1. School of Arts and Media, Hefei Normal University, Hefei 230601, China

2. School of Science, Anhui Agricultural University, Hefei 230036, China

3. Shanghai Eigencomm Technologies Ltd., Shanghai 201210, China

Abstract

The detection of building wall surface defects is of great significance to eliminate potential safety hazards. In this paper, a research on building wall design defect image recognition based on partial differential equation is proposed. Collect the image data of building surface defects, sample and quantify the collected images, and preprocess the defect images such as digital threshold segmentation, filtering, and enhancement. Then, the improved partial differential equation is used to recognize the image as a whole. The second-order partial differential diffusion equation and the fourth-order partial differential equation are used to recognize the high-frequency and low-frequency bands of the image, respectively. The kernel principal component analysis algorithm is used to transfer the overall image input space to the high-dimensional feature space. The kernel function is used to calculate the inner product in different subband images of the high-dimensional feature space to reduce the dimension of the overall image. The processed coefficients are inversely transformed by nondownsampling contour wave to realize the overall image recognition and ensure that the edge information of the source image does not disappear. Experimental results show that compared with other algorithms, the proposed algorithm has better effect and better stability.

Funder

project of supporting outstanding young talents in Universities of Anhui Province

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3