Foxp3+Regulatory T Cells in Mouse Models of Type 1 Diabetes

Author:

Petzold Cathleen1,Riewaldt Julia1,Watts Deepika1,Sparwasser Tim2,Schallenberg Sonja1,Kretschmer Karsten13

Affiliation:

1. Center for Regenerative Therapies Dresden, 01307 Dresden, Germany

2. Institute of Infection Immunology, TWINCORE/Centre for Experimental and Clinical Infection Research, 30625 Hanover, Germany

3. Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), 01307 Dresden, Germany

Abstract

Studies on human type 1 diabetes (T1D) are facilitated by the availability of animal models such as nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes, as well as a variety of genetically engineered mouse models with reduced genetic and pathogenic complexity, as compared to the spontaneous NOD model. In recent years, increasing evidence has implicated CD4+CD25+regulatory T (Treg) cells expressing the transcription factor Foxp3 in both the breakdown of self-tolerance and the restoration of immune homeostasis in T1D. In this paper, we provide an overview of currently available mouse models to study the role of Foxp3+Treg cells in the control of destructiveβcell autoimmunity, including a novel NOD model that allows specific and temporally controlled deletion of Foxp3+Treg cells.

Funder

Federal Ministry of Education and Research

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3