Influence of Fiber Content on Mechanical and Morphological Properties of Woven Kenaf Reinforced PVB Film Produced Using a Hot Press Technique

Author:

Salman Suhad D.12,Leman Z.1,Sultan M. T. H.3,Ishak M. R.34,Cardona F.3

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2. Materials Engineering Department, Faculty of Engineering, Al-Mustansiriya University, Baghdad, Iraq

3. Aerospace Manufacturing Research Centre (AMRC), Level 7, Tower Block, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

4. Laboratory of Bio-Composites Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Abstract

This work addresses the results of experimental investigation carried out on mechanical and morphological properties of plain woven kenaf fiber reinforced PVB film which was prepared by hot press technique. The composites were prepared with various fiber contents: 0%, 10%, 20%, 30%, 40%, 50%, and 60% (by weight), with the processing parameters 165°C, 20 min, and at a pressure of 8 MPa applied on the material. Tensile, flexural, and Charpy impact properties were studied as well as morphological properties of impact fracture surface. With the increase in kenaf fibers content up to 40%, the PVB composites have shown lower tensile and flexural strength accompanied with reduction in the ultimate strain of the composite. The results showed that impact properties were affected in markedly different ways by using various kenaf contents and decrease with the increase in kenaf fiber content up to 40%; however, high impact strength was observed even with 40% kenaf fiber content. Furthermore, scanning electron microscopy for impact samples was utilised to demonstrate the different failures in the fracture surfaces for various kenaf fibers contents.

Funder

Universiti Putra Malaysia

Publisher

Hindawi Limited

Subject

Polymers and Plastics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3