An Improved DTN Scheme for Large-Scale LEO Satellite Networks

Author:

Liu Gaosai12ORCID,Jiang Xinglong123ORCID,Li Huawang123,Sun Siyue123ORCID,Zhang Zhenhua12,Liang Guang123

Affiliation:

1. Innovation Academy for Microsatellites of CAS, Shanghai 201204, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Shanghai Engineering Center for Microsatellites, Shanghai 201204, China

Abstract

A large-scale low Earth orbit (LEO) satellite network has the characteristics of a complex link environment, a large number of satellites, and the limited resources of a single satellite. Applying traditional routing algorithms has disadvantages such as high overhead, high end-to-end latency, and low message delivery rate. This paper proposes an improved delay tolerant (DTN) scheme for large-scale LEO satellite networks (LIDTN) to improve transmission efficiency and reduce the resource overhead and end-to-end latency of large-scale satellite networks. This scheme improves the network performance in three aspects: next hop selection, congestion control mechanism, and acknowledgment mechanism. For the next hop selection, we propose an equivalent distance and priori knowledge-based forwarding strategy (EPFS), which has the advantages of low overhead, loop avoidance, and fast convergence. For congestion control, we put forward an emergency function-based bundle drop algorithm (EBDA). For acknowledging, we propose the virtual acknowledgment algorithm (VAA) by combining the characteristics of many path hops and high link disruption rates in large-scale constellations. Finally, we simulate and verify the LIDTN scheme on the OneWeb constellation. The results show that the LIDTN scheme is suitable for large-scale constellations, the EPFS algorithm can reduce the network overhead during data transmission, EBDA can reduce the bundle drop rate, and VAA can reduce the end-to-end latency. LIDTN provides a new solution for large-scale constellation communication.

Funder

Shanghai Industrial Collaborative Innovation Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3