Degradation in Seawater of Structural Adhesives for Hybrid Fibre-Metal Laminated Materials

Author:

Alia Cristina1,Biezma María V.2ORCID,Pinilla Paz1,Arenas José M.1ORCID,Suárez Juan C.1

Affiliation:

1. Center for Durability and Structural Integrity of Materials (CISDEM-UPM/CSIC), Universidad Politécnica de Madrid, C/Ronda Valencia, 3-28015 Madrid, Spain

2. Research Group on Degradation and Corrosion of Materials, Universidad de Cantabria, c/Gamazo, 1-39004 Santander, Spain

Abstract

The adhesives used for applications in marine environments are subject to particular chemical conditions, which are mainly characterised by an elevated chlorine ion content and intermittent wetting/drying cycles, among others. These conditions can limit the use of adhesives due to the degradation processes that they experience. In this work, the chemical degradation of two different polymers, polyurethane and vinylester, was studied in natural seawater under immersion for different periods of time. The diffusion coefficients and concentration profiles of water throughout the thickness of the adhesives were obtained. Microstructural changes in the polymer due to the action of water were observed by SEM, and the chemical degradation of the polymer was monitored with the Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The degradation of the mechanical properties of the adhesive was determined by creep tests with Mixed Cantilever Beam (MCB) specimens at different temperatures. After 180 days of immersion of the specimens, it was concluded that theJ-integral value (depending on the strain) implies a loss of stiffness of 51% and a decrease in the failure load of 59% for the adhesive tested.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3