PCMT1 Is a Potential Prognostic Biomarker and Is Correlated with Immune Infiltrates in Breast Cancer

Author:

Guo Jufang1,Du Xuelian1,Li Chaolin1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Jinniu District Maternal and Child Health Hospital, Chengdu, China

Abstract

Background. Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT1) is involved in the occurrence and development of a variety of malignant tumors. However, the prognostic value of PCMT1 in breast cancer remains unclear. Methods. Based on the Cancer Genome Atlas database, we assessed the correlation between the expression of PCMT1 and prognosis, immune invasion, and tumor mutation burden in a variety of cancers. The expression level, mutation, immune correlation, and coexpression of PCMT1 in breast cancer were studied using the following databases: UALCAN database, Human Protein Atlas database, cBioPortal database, TIMER database, and LinkedOmics database. Kaplan–Meier Plotter was used for survival analysis. Receiver operating characteristic (ROC) curves and nomograms were drawn using the R software package. P < 0.05 was considered statistically significant. Results. Pancancer analysis showed that PCMT1 is highly expressed in a variety of cancers and is significantly related to the prognosis of a variety of cancers. PCMT1 is significantly related to the tumor mutation burden of a variety of cancers. PCMT1 is significantly high in breast cancer, and it is significantly related to the abundance of immune infiltration. Survival analysis revealed that high PCMT1 expression is significantly associated with shorter overall survival (OS), relapse-free survival (RFS), and postprogression survival (PPS) in breast cancer patients. ROC curves and nomograms verify the effectiveness of PCMT1 as a prognostic biomarker for breast cancer. Conclusions. PCMT1 can be used as a potential prognostic biomarker of breast cancer, and it is significantly related to the abundance of breast cancer immune infiltration.

Funder

Project of Chengdu Municipal Health Commission

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3