The Classification of Music and Art Genres under the Visual Threshold of Deep Learning

Author:

Zheng Zhiqiang1ORCID

Affiliation:

1. School of Music, Henan Vocational Institute of Arts, Zhengzhou, Henan, China

Abstract

Wireless networks are commonly employed for ambient assisted living applications, and artificial intelligence-enabled event detection and classification processes have become familiar. However, music is a kind of time-series data, and it is challenging to design an effective music genre classification (MGC) system due to a large quantity of music data. Robust MGC techniques necessitate a massive amount of data, which is time-consuming, laborious, and requires expert knowledge. Few studies have focused on the design of music representations extracted directly from input waveforms. In recent times, deep learning (DL) models have been widely used due to their characteristics of automatic extracting advanced features and contextual representation from actual music or processed data. This paper aims to develop a novel deep learning-enabled music genre classification (DLE-MGC) technique. The proposed DLE-MGC technique effectively classifies the music genres into multiple classes by using three subprocesses, namely preprocessing, classification, and hyperparameter optimization. At the initial stage, the Pitch to Vector (Pitch2vec) approach is applied as a preprocessing step where the pitches in the input musical instrument digital interface (MIDI) files are transformed into the vector sequences. Besides, the DLE-MGC technique involves the design of a cat swarm optimization (CSO) with bidirectional long-term memory (BiLSTM) model for the classification process. The DBTMPE technique has gained a moderately increased accuracy of 94.27%, and the DLE-MGC technique has accomplished a better accuracy of 95.87%. The performance validation of the DLE-MGC technique was carried out using the Lakh MIDI music dataset, and the comparative results verified the promising performance of the DLE-MGC technique over current methods.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference24 articles.

1. Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques

2. Representation Learning: A Review and New Perspectives

3. The million song dataset;T. Bertin-Mahieux

4. Cross-collection evaluation for music classification tasks;D. Bogdanov

5. Automatic tagging using deep convolutional neural networks;K. Choi

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3