Affiliation:
1. School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract
Differential evolution has made great achievements in various fields such as computational sciences, engineering optimization, and operations management in the past decades. It is well known that the control parameter setting plays a very important role in terms of the performance improvement of differential evolution. In this paper, a differential evolution without the scale factor and the crossover probability is presented, which eliminates almost all control parameters except for the population size. The proposed algorithm looks upon each individual as a charged particle to decide on the shift of the individual in the direction of the difference based on the attraction-repulsion mechanism in Coulomb’s Law. Moreover, Taguchi’s parameter design method with the two-level orthogonal array is merged into the crossover operation in order to obtain better individuals in the next generation by means of better combination of factor levels. What is more, a new ratio of the signal-to-noise is proposed for the purpose of fair comparison of the numerical experiment for the tested functions which have an optimal value with 0. Numerical experiments show that the proposed algorithm outperforms the other 5 compared algorithms for the 10 benchmark functions.
Funder
University of Electronic Science and Technology of China
Reference32 articles.
1. Differential Evolution: A review of more than two decades of research
2. Discrete differential evolution metaheuristics for permutation flow shop scheduling problems
3. Self-adaptive differential evolution with fast and reliable convergence performance;J. Zhang
4. Self-adaptive differential evolution algorithm for numerical optimization;A. Qin
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献