Affiliation:
1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
Abstract
Objectives. This study is aimed at developing a screening tool that could evaluate the upper airway obstruction on lateral cephalograms based on deep learning. Methods. We developed a novel and practical convolutional neural network model to automatically evaluate upper airway obstruction based on ResNet backbone using the lateral cephalogram. A total of 1219 X-ray images were collected for model training and testing. Results. In comparison with VGG16, our model showed a better performance with sensitivity of 0.86, specificity of 0.89, PPV of 0.90, NPV of 0.85, and F1-score of 0.88, respectively. The heat maps of cephalograms showed a deeper understanding of features learned by deep learning model. Conclusion. This study demonstrated that deep learning could learn effective features from cephalograms and automated evaluate upper airway obstruction according to X-ray images. Clinical Relevance. A novel and practical deep convolutional neural network model has been established to relieve dentists’ workload of screening and improve accuracy in upper airway obstruction.
Funder
Public Service Platform of Chengdu
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献