A Cross-Diagnosis Method for Determining the Structural Condition of a Long-Span Suspension Bridge Based on the Spatial Windows of Distributed Strain Data

Author:

Xu Qianen1ORCID,Zhou Zheng1ORCID,Liu Yang1ORCID

Affiliation:

1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China

Abstract

Using structural health monitoring (SHM) techniques, Brillouin optical time-domain analysis (BOTDA) sensors can be mounted along the main box girder entire length of a long-span suspension bridge, and the high-density measured points strain monitoring data can be obtained. However, insufficient research has been conducted on accurately diagnosing the structural condition of a long-span suspension bridge by using the abovementioned strain monitoring data. To address this issue, a cross-diagnosis method that determines the structural condition of long-span suspension bridges based on the distributed strain data spatial window is proposed in this study. First, the distributed strain data spatial window based on a long-span suspension bridge structural symmetry is defined. Then, a method that divides the distributed strain data of the bridge main box girder into different spatial windows using mutual information between the strain data from BOTDA sensors is presented. The special symmetry of the environmental temperature effect on the spatial window structural performance is carried out to separate the temperature effect from the strain monitoring data; this process can effectively reduce the interference of ambient temperature on the results of the structural condition diagnosis. Second, using a convolutional neural network, a diagnosis index of the structural condition is generated by using the correlation model between the high-density measured points and the distributed strain data belonging to one whole spatial window. Regarding one spatial window, the proposed diagnosis index can effectively reflect the variation in the distributed strain correlation model caused by the damaged condition of the long-span suspension bridge to achieve cross-diagnosis of the structural condition of the bridge. Finally, the effectiveness of the proposed method is demonstrated through a numerical simulation using strain monitoring data obtained from a real bridge.

Funder

Key Research and Development Program of Heilongjiang

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3