Affiliation:
1. School of Materials Science and Engineering, Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in University of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China
2. Carbon/Carbon Composites Technology Research Center, Northwestern Polytechnical University, Xi’an 710072, China
Abstract
Tetracalcium phosphate (TTCP, Ca4(PO4)2O) was prepared by the calcination of coprecipitated mixture of nanoscale hydroxyapatite (HA, Ca10(PO4)6(OH)2) and calcium carbonate crystal (CaCO3), followed by cooling in the air or furnace. The effect of calcination temperature on crystal structure and phase composition of the coprecipitation mixture was characterized by transmission electron microscope (TEM), thermal analysis-thermogravimetry (DTA-TG), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and Raman spectroscopy (RS). The obtained results indicated that the synthesized mixture consisted of nanoscale HA and CaCO3with uniform distribution throughout the composite. TTCP was observed in the air quenching samples when the calcination temperature was above 1185°C. With the increase of the calcination temperature, the amount of the intermediate products in the air quenching samples decreased and cannot be detected when calcination temperature reached 1450°C. Unexpectedly, the mixture of HA and calcium oxide was observed in the furnace cooling samples. Clearly, the calcination temperature and cooling methods are critical for the synthesis of high-purity TTCP. The results indicate that the nanosize of precursors can decrease the calcination temperature, and TTCP can be calcinated by low temperature.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献