A Torsional Vibration Measurement Method for Rotating Blades Based on Blade Tip Timing

Author:

Guo Haonan1,Yang Yongmin1ORCID,Guan Fengjiao1,Hu Haifeng1,Shen Guoji1,Chen Suiyu1,Bian Zifang1

Affiliation:

1. Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

During the working process of the turbine, some types of faults can cause changes in the vibration characteristics of the blades. The real-time vibration monitoring of the blades is of great significance to the stable operation and state-based maintenance. Torsional vibration is a kind of blade vibration modes and results in failures such as cracks easily. Thus, it is important to measure it due to the harmfulness of torsional vibration. Firstly, the principle of blade tip timing (BTT) is introduced, and the models of the blade are built to analyze the characteristics of torsional vibration. Then, the compressed sensing theory is introduced, and its related parameters are determined according to the measurement requirements. Next, based on the condition that the blade rigidity axis is not bent and bent, respectively, the layout method of sensors is proposed and the numerical simulation of the measurement process is performed. The results of the above two types of numerical simulation verify the proposed measurement method. Finally, by analyzing the influencing factors of measurement uncertainty, the optimization method of sensors’ layout is further proposed. This study can provide important theoretical guidance for the measurement of blade torsional vibration.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating Torsional Vibration Monitoring Using Optical Sensors and Encoder Wheels;2024 15th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3