AEMF: An Attention-Based Efficient and Multifeature Fast Text Detector

Author:

Ma Wanqi1ORCID,Yang Chaoyu1ORCID,Yang Jie2,Wu Jian1

Affiliation:

1. School of Economics and Management, Anhui University of Science and Technology, Huainan 232001, China

2. School of Computing and Information Technology, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia

Abstract

The label from industrial commodity packaging usually contains important data, such as production date, manufacturer, and other commodity-related information. As such, those labels are essential for consumers to purchase goods, help commodity supervision, and reveal potential product safety problems. Consequently, packaging label detection, as the prerequisite for product label identification, becomes a very useful application, which has achieved promising results in the past decades. Yet, in complex industrial scenarios, traditional detection methods are often unable to meet the requirements, which suffer from many problems of low accuracy and efficiency. In this paper, we propose a multifeature fast and attention-based algorithm using a combination of area suggestion and semantic segmentation. This algorithm is an attention-based efficient and multifeature fast text detector (termed AEMF). The proposed approach is formed by fusing segmentation branches and detection branches with each other. Based on the original algorithm that can only detect text in any direction, it is possible to detect different shapes with a better accuracy. Meanwhile, the algorithm also works better on long-text detection. The algorithm was evaluated using ICDAR2015, CTW1500, and MSRA-TD500 public datasets. The experimental results show that the proposed multifeature fusion with self-attention module makes the algorithm more accurate and efficient than existing algorithms. On the MSRA-TD500 dataset, the AEMF algorithm has an F-measure of 72.3% and a frame per second (FPS) of 8. On the CTW1500 dataset, the AEMF algorithm has an F-measure of 62.3% and an FPS of 23. In particular, the AEMF algorithm has achieved an F-measure of 79.3% and an FPS of 16 on the ICDAR2015 dataset, demonstrating the excellent performance in detecting label text on industrial packaging.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3