Substituted-Amidine Functionalized Monocyclic β-Lactams: Synthesis and In Vitro Antibacterial Profile

Author:

He Lili1,Zhai Lijuan1,Sun Jian1,Ji Jingwen1,Ji Jinbo1,Liu Yuanbai1,Mu Yangxiu1,Gao Yuanyu1,Tang Dong1,Jiang Rui1,Myo Ko Ko12,Thu Zaw Min12ORCID,Yang Haikang1,Iqbal Zafar1ORCID,Yang Zhixiang1ORCID

Affiliation:

1. Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan, Ningxia 750002, China

2. Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar

Abstract

Background. Owing to the intrinsic stability against common β-lactamases and metallo-lactamases, monobactams gathered special attention in antibiotic drug development. However, so far, aztreonam is the only monobactam approved by FDA for clinical use. We designed new derivatives of aztreonam to enhance its antibacterial efficacy. Methods. We synthesized a series of monocyclic β-lactams by modifying mainly at the C3 position of azetidinone ring. NH2 group at C3 of azetidinone was attached to thiazole and thiadiazole which in turn was linked to nitrogenous heterocyclic rings via amidine moieties. We then investigated the in vitro antibacterial activities of synthesized compounds against ten bacterial strains of clinical interest in comparison to aztreonam and ceftazidime. Results. All compounds showed improved antibacterial activities against tested strains compared to reference drugs. Compounds 14d and 14e were most potent and showed the highest potency against all bacterial strains, with MIC values ranging from 0.25 µg/mL to 8 µg/mL, as compared to aztreonam (MIC 16 µg/mL to >64 µg/mL) and ceftazidime (MIC >64 µg/mL). These compounds (14d and 14e) may be valuable lead targets against multidrug-resistant Gram-negative bacteria.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3