Affiliation:
1. Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
2. Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China
Abstract
In motor imagery brain computer interface system, the spatial covariance matrices of EEG signals which carried important discriminative information have been well used to improve the decoding performance of motor imagery. However, the covariance matrices often suffer from the problem of high dimensionality, which leads to a high computational cost and overfitting. These problems directly limit the application ability and work efficiency of the BCI system. To improve these problems and enhance the performance of the BCI system, in this study, we propose a novel semisupervised locality-preserving graph embedding model to learn a low-dimensional embedding. This approach enables a low-dimensional embedding to capture more discriminant information for classification by efficiently incorporating information from testing and training data into a Riemannian graph. Furthermore, we obtain an efficient classification algorithm using an extreme learning machine (ELM) classifier developed on the tangent space of a learned embedding. Experimental results show that our proposed approach achieves higher classification performance than benchmark methods on various datasets, including the BCI Competition IIa dataset and in-house BCI datasets.
Funder
Natural Science Foundation of Hainan Province
Subject
Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献