Dynamic Compression Properties of the Resistance Spot Welding of High Strength Steels under Varying Temperature Conditions

Author:

Fan Chunlei1ORCID,Wang Huanran2,Ma Dongfang3

Affiliation:

1. Architectural Engineering Institute, Zhejiang Industry Polytechnic College, Shaoxing 312000, China

2. Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China

3. College of Science & Technology, Ningbo University, Ningbo 315300, China

Abstract

In this paper, we have studied the dynamic compression performance of the RSW of QP980 steel and TRIP800 steel by using a split Hopkinson pressure bar (SHPB), and we have also examined the fracture mode of the two research objects. It is found that the spot welding zone is primarily composed of the martensite structure, and there is a sparse defect of crystal structure adjacent to the center of nugget. In addition, there are evident gaps between the plates on both sides of the spot welding zone. Through the measurement of the microhardness of the two grade steel, it is found that the average hardness of the RSW of QP980 steel is higher than that of TRIP800 steel. There is a softening region in the interface of the heat affected zone and the substrate zone. The dynamic compression experiments are carried out on the RSW of QP980 steel and TRIP800 steel under 200°C and 300°C conditions, and it is found that the strain rate would increase with the rising temperature, but the compressive strength would experience declines. Furthermore, the sparse defects of crystal structure adjacent to the center of nugget would lead to stress rebound when the specimen is compressed. Moreover, through the observation of the fracture surface of the recovered specimens, it is found that the fracture of the nugget is brittle, whereas the fracture mode of the sample is more complicated. In addition, the fracture surface features a number of “river pattern” cleavage facets, and there are very few dimples of ductile tearing. This study is expected to have huge implications to the safety of vehicle body under high-speed impact.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3