A Novel Transfer Enhanced α -Expansion Move Learning Model for EEG Signals

Author:

Cai Jiangwei1ORCID,Zhao Lu1ORCID,Bi Anqi1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Changshu Institute of Technology, Changshu, Jiangsu, China

Abstract

In this paper, we focus on recognizing epileptic seizure from scant EEG signals and propose a novel transfer enhanced α -expansion move (TrEEM) learning model. This framework implants transfer learning into the exemplar-based clustering model to improve the utilization rate of EEG signals. Starting from Bayesian probability theory, by leveraging Kullback-Leibler distance, we measure the similarity relationship between source and target data. Furthermore, we embed this relationship into the calculation of similarity matrix involved in the exemplar-based clustering model. Then we sum up a new objective function and study this new TrEEM scheme earnestly. We optimize the proposed TrEEM model by borrowing the mechanism utilized in EEM. In contrast to other machine learning models, experiments based on synthetic and real-world EEG datasets show that the performance of the proposed TrEEM is very promising.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3